
103FORMATH Vol. 9 (2010): 103–122

Modeling Spatial Variation in Stand Volume
of Acacia mangium Plantations Using
Geographically Weighted Regression

Tiryana, T., Tatsuhara, S. & Shiraishi, N.

Keywords: Geographically weighted regression (GWR), spatial variation, stand

volume

Abstract: Stand volume can be estimated from other stand variables by using

multiple linear regression (MLR) or other ordinary regression mod-

els. MLR, however, only produces global parameter estimates that

cannot reveal spatial variations in stand variables. In this study,

we used a geographical weighted regression (GWR) method to in-

vestigate local spatial variations in the relationship between stand

volume, stand age, and basal area of Acacia mangium plantations,

and to examine whether a GWR model could provide better predic-

tion accuracy than an MLR model. Stand data and geographical

coordinates were obtained from 247 plantation sample plots. We

analyzed the data using MLR and GWR methods by formulating a

linear model that relates stand volume to stand age and basal area.

Performance of the GWR model was compared with the MLR model

in terms of their parameter estimates and goodness-of-fit statistics.

We found that the GWR model was not only able to reveal local

spatial variations in the relationship between stand volume, stand

age, and basal area, but it also produced better prediction accuracy

than the MLR model. The GWR model reduced AIC by 2%, in-

creased R2
adj up to 3%, and reduced RMSE by 14%, compared with

those of the MLR model. The GWR model, therefore, could be use-

ful for modeling spatial variations in stand attributes that cannot be

revealed by ordinary regression models.
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1. Introduction

Information about forest resources is essential for forest managers

to manage their forests in appropriate ways. Among others, stand

volume is still considered to be an important stand variable (Husch

et al., 2003), which is commonly used by forest managers to estimate

financial benefits from their forests. Stand volume can also be used to

quantify forest biomass by using a volume-biomass model (e.g., Fang et

al., 1998). Estimation of stand volume is therefore an important aspect

in forest management.

Stand volume can be estimated from other stand variables (e.g., basal

area, height, age, and the number of trees) by using a stand volume

equation (Clutter et al., 1988, Husch et al., 2003). Traditionally, ordi-

nary linear or nonlinear regression (see e.g., Draper and Smith, 1998)

is often used to develop a stand volume equation. For instance, Vélez

and Valle (2007) used a simple power model to estimate stand volume

from basal area of Acacia mangium plantations in Colombia. There is

no doubt that a stand volume equation derived from an ordinary re-

gression model has provided a useful tool for forest management. The

ordinary regression model, however, has a limitation because it pro-

duces a global model that assumes the stationary of model parameters,

meaning that the effect of each predictor is constant over the whole

study area. For instance, if a global model estimates stand volume

from basal area, then the estimated stand volume at a certain location

will be the same as that of other locations with the same level of basal

area. In reality, it is not always true because the relationship between

basal area and stand volume might vary from one location to another as

the result of local spatial variations. Because the global model cannot

represent spatial variations in the relationships among stand variables,

it would produce less accurate predictions. It is therefore the global

model would less appropriate for detail spatial forest planning in which
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precise information of forest resources at every location is desirable.

One of the promising methods for modeling local spatial variations

is geographically weighted regression (GWR, see Fotheringham et al.,

2002). The basic idea of GWR is capturing spatial variation by fitting

regression models at each location. It means that each location has a

set of model parameters that may differ from other locations. Thus,

GWR extends a global regression model to account for spatial non-

stationary in the relationship between observed variables across space

(Fotheringham et al., 2002, Miller et al., 2007).

Although GWR has initially gained popularity in the fields of human

geography and socio-economics (Fotheringham et al., 2002, Kupfer and

Farris, 2007, Miller et al., 2007), several studies have also confirmed the

usefulness of this method for forestry applications. Zhang et al. (2004)

showed that GWR outperformed ordinary regression for predicting in-

dividual tree heights of a forest stand. Zhang and Shi (2004) as well

as Kupfer and Farris (2007) provided other evident that basal area was

better predicted by using GWR rather than ordinary regression. Simi-

larly, Wang et al. (2005) also concluded that GWR was better than or-

dinary regression for predicting net primary production, whereas Kim-

sey et al. (2008) confirmed such conclusion when they used GWR for

predicting site index.

While those previous studies have used GWR for modeling spatial

variations in tree heights, basal area, net primary production, and

site index of forest stands, there is still lack of study that used GWR

for modeling spatial variations in stand volume, especially for Acacia

mangium plantations. In this study, we used GWR to investigate local

spatial variations in the relationship between stand volume, stand age,

and basal of Acacia mangium plantations in West Java, Indonesia. We

were particularly interested to explore whether local variations of stand

age and basal area might give different effects to stand volume and to
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examine whether GWR model could provide better prediction accuracy

than MLR model.

2. Material and Methods

2.1. Data

This study used forest inventory data collected from Acacia mangium

plantations located in Bogor, West Java, Indonesia (6◦ 21’0”-6◦24’3”

S, 106◦26’7”-106◦29’58” E). The total plantation areas is 1466.44 ha,

which is mostly located on flat and gently undulating terrains (0-8%)

with a mean annual rainfall of 3000 mm. The plantations are usually

thinned at 3, 5, and 7 years, which are then harvested at 10-12 years to

produce timbers for building and furniture materials (Perum Perhutani,

2006).

Data on stand volume, stand age, and basal area were collected from

247 circular sample plots with sizes ranging from 0.02 to 0.1 ha. To

cover the spatial variations of plantations, the sample plots were estab-

lished systematically (with interval of about 200 m) in 16 compartments

within the study area. Besides stand variables data, the geographical

coordinates (UTM system at zone 48S) of plot centers were also used

in data analysis.

2.2. Statistical analysis

The data were analyzed using ordinary multiple linear regression

(MLR) and GWR methods. The results of both methods were then

compared and evaluated in terms of their parameter estimates and

goodness-of-fit statistics.

We first explored the data set and found that stand volume had

strong correlations with stand age (r = 0.62) and basal area (r = 0.94),

while there was no strong correlation (r = 0.34) between stand age

and basal area. These results suggested that stand age and basal area
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were appropriate predictors for stand volume, besides they are easier

to measure in the field than other stand variables (e.g, height and

site index). The stand volume (response variable) was assumed to

be a random variable from a normally distributed population. We

formulated the global model using MLR as follows:

yi = β0 + β1x1i + β2x2i + εi[1]

where yi is stand volume (m3/ha), x1i is stand age (years), x2i is basal

area (m2/ha) at sample plot i, β0, β1, β2 are model parameters, and

εi is random error term that follows a normal distribution with mean

zero and variance σ2. Model parameters were estimated using ordinary

least squares (OLS) as commonly used in MLR (see Draper and Smith,

1998):

β̂ =
(
tXX

)−1 tXy[2]

where t denotes the transpose of a matrix. The analysis of MLR model

was performed using R version 2.8.1 (R Development Core Team, 2009).

While global models only produce single coefficient for each param-

eter (as Eq. [1]), GWR generates local coefficients for each parameter

by integrating geographical coordinates of the sample plots (Fothering-

ham et al., 2002). In GWR, therefore, the relationship between stand

volume, stand age, and basal area was formulated as follows:

yi = β0(ui,vi) + β1(ui,vi)x1i + β2(ui,vi)x2i + εi[3]

where (ui, vi) are geographical coordinates of sample plot i.

It is clear from [1] and [3] that GWR extends MLR model by gener-

ating local coefficients for each parameter. GWR estimates local coef-

ficients at a sample point based on its neighboring observations within

a certain distance (called as a bandwidth) that are weighted using a

weighting function (called as a spatial kernel). Observations closer to
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the sample point will give more weight or influence in determining the

local coefficients. Thus, the weights of neighboring observations are

controlled by a bandwidth (expressed in radius or number of obser-

vations), which is either fixed bandwidth or adaptive bandwidth, of a

spatial kernel (Fotheringham et al., 2002). In this study, we used the

adaptive bandwidth with Gaussian kernel function as follows:

wij = exp
{
−0.5 (dij/h)2

}
[4]

where wij is a weight for an observation at location j around the sample

plot i, dij is distance between locations i and j, and h is bandwidth. To

obtain an optimal bandwidth, we used the minimization of AIC defined

as follows (Fotheringham et al., 2002):

AIC = 2n log
(
σ̂2
)

+ n log (2π) + n

{
n + tr (S)

n − 2 − tr (S)

}
[5]

where n is the total number of sample plots, σ̂ is the estimated standard

deviation of the error term, and tr(S) is the trace of hat matrix S

that maps the vector of estimated values into the observed values (i.e.,

ŷ = Sy). In our study, the optimal bandwidth was 4.8% of the total

sample that is closest to a certain data point (in average about 11 of

247 observations). To ensure the appropriateness of the kernel function,

we also tested Gaussian and bi-square with fixed bandwidth kernel

functions, but, none of them produced lower AIC than that of the

Gaussian kernel with adaptive bandwidth.

The weights derived from the Gaussian kernel function were then

used by GWR to estimate local coefficients for each parameter using a

weighted least squares regression (Fotheringham et al., 2002):

β̂i =
(
tXWiX

)−1 tXWiy[6]
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where Wi is a spatial weighting matrix of the form:

Wi =

⎛
⎜⎜⎜⎝

wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · win

⎞
⎟⎟⎟⎠[7]

All calculations of GWR were performed using spgwr package of the

R software (Bivand and Yu, 2009). Further statistical theories related

to GWR can be found in Fotheringham et al. (2002) and some papers

(e.g., Zhang et al., 2004, Zhang and Shi, 2004).

The presence of non-stationary in the relationship between stand vol-

ume, stand age, and basal area was examined by comparing the model

parameters of GWR and MLR. If the inter-quartile range of GWR is

greater than the range of β± standard error (SE) of MLR, this indicates

the presence of non-stationary in model parameters (Fotheringham et

al., 2002). To illustrate spatial variations in the relationship between

stand volume, stand age, and basal area, we mapped the local param-

eter estimates and model R2
adj . In addition, we further explored cor-

relation between GWR coefficient estimates to examine the possibility

of multicollinearity among the local coefficients as studied in detail by

Wheeler and Tiefelsdorf (2005). We then compared the goodness-of-fit

statistics of MLR and GWR models by using AIC, adjusted coefficient

of determination (R2
adj), and root mean square error (RMSE) values.

The model with the highest AIC and R2
adj values, but lowest RMSE,

was considered to be an appropriate model for predicting stand volume.

3. Results

3.1. MLR model

MLR model showed that stand volume could be well predicted from

stand age and basal area (Tab. 1). The model explained about 96% of

the total variations in stand volume of Acacia mangium plantations.
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Table 1. Parameter estimates of the MLR and GWR models for

predicting stand volume of Acacia mangium plantations

Model Statistics Model parameter

Intercept (β0) Age (β1) Basal area (β2)

MLR Estimate -23.0447∗∗ 3.3251∗∗ 5.6403∗∗

Standard error (SE) 1.003 0.145 0.094

βi−SE -24.048 3.180 5.547

βi+SE -22.042 3.470 5.734

GWR Minimum -41.030 1.419 3.975

25% quartile -24.630 2.841 5.339

Median -22.340 3.165 5.640

75% quartile -19.060 3.480 6.060

Maximum -14.230 6.177 6.901

Note) ∗∗ Significant at p < 0.001

The regression coefficients for stand age and basal area were positive

and significant (p < 0.001), meaning that stand volume increased at

older stands and higher basal area. Obviously, MLR model only pro-

vided single coefficient for each independent variable, whereas varia-

tions in stand age and basal area were only measured by their standard

errors. Compared to basal area, stand age had a higher standard error,

meaning that it was more variable than basal area in their relationship

to stand volume.

The predictive performance of MLR model seemed to be less accurate

(Fig. 1a). The model underestimated stand volumes in the low range (<

12m3/ha) and high range (> 60m3/ha). There were also some obvious

outliers in the middle range (13-59 m3/ha), indicating overestimated

stand volumes.

3.2. GWR model

Unlike MLR model, GWR model provided varying coefficients for

each parameter (Tab. 1). Model intercepts varied from −41.03 to

−14.23, whereas local coefficients for stand age varied from 1.42 to
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Figure 1. Scatter plots between predicted and actual

stand volumes from (a) MLR and (b) GWR models

6.18, and those for basal area varied from 3.98 to 6.90. The wider

range of local coefficients for stand age indicated that local variations

in stand age were greater than those in basal area. The local effects of
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Figure 2. Spatial distribution of the local (a) intercepts, and (b)

coefficients for stand age obtained from the GWR model

basal area to stand volume, however, were greater than those of stand

age, because basal area had slightly higher local coefficients.

Spatial distribution of the model intercepts (Fig. 2a) showed that the

effects of intercepts to stand volume estimates were different from one

location to another. There was, indeed, non-stationary in the model

intercepts because the inter-quartile range (−24.630 to −19.060) of the

GWR’s intercepts was outside the range of β±SE (−24.048 to −22.042)
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Figure 2. (cont.) Spatial distribution of the local (c) coefficients

for basal area, and (d) adjusted coefficients of determination

(R2
adj) obtained from the GWR model

of the MLR’s intercept.

Similar to the global model result, the local coefficients for stand

age were also positive, meaning that local stand volumes tended to

increase with increasing stand ages. GWR model, however, clearly

showed that the effects of stand age to stand volume varied from one

location to another (Fig. 2b), indicating that there was a non-stationary
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Table 2. Goodness-of-fit statistics of the MLR and GWR models

Model R2
adj (%) RMSE AIC

MLR 96.09 4.68 1468.35

GWR 90.89–98.87 4.04 1442.24

in stand age across the study area. The inter-quartile range of stand age

(2.841− 3.480), which was outside the range of β ± SE (3.180− 3.470)

of MLR model, has also confirmed the presence of non-stationary in

stand age (Tab. 1).

The local coefficients for basal area were also positive but slightly

higher than those for stand age, meaning that local stand volumes

increased at stands with higher basal areas. There were obvious clus-

tered patterns in spatial distribution of the local coefficients of basal

area (Fig. 2c). For instance, the lower parts of south-west areas had

higher basal area effects than the lowest parts of north areas. The non-

stationary of basal area was also indicated by the inter-quartile range

(5.339 − 6.060) of GWR model that was slightly beyond the range of

β ± SE of MLR model (5.547 − 5.734, Tab. 1).

While the effects of local stand age and basal area could be expressed

by their local coefficients, total variations in local stand volumes ex-

plained by these stand variables could be quantified by the local ad-

justed coefficients of determination (R2
adj). The local R2

adj values var-

ied from 90.89% to 98.87% (Fig. 2d), showing that the majority (about

83%) of sample plots were fitted by GWR with R2
adj larger than that

of MLR model (R2
adj = 96.09%). The spatial distribution of local R2

adj

values seemed to be similar with that of basal area (Fig. 2d, 2c), i.e.,

clustered spatial patterns, which indicated that the local variation of

stand volume was more influenced by the local variation of basal area

than stand age.
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Table 3. Coefficients of correlation

between local GWR coefficient estimates

Intercept(β0) Age(β1) Basal area(β2)

Intercept(β0) 1.000 -0.589 -0.223

Age(β1) 1.000 -0.647

Basal area(β2) 1.000

Compared to MLR model, GWR model performed better in predict-

ing local stand volume as indicated by their goodness-of-fit-statistics

(Tab. 2). GWR model reduced AIC by 2% (about 26 scores), increased

R2
adj up to 3%, and reduced RMSE by 14%. The scatter plot between

predicted and actual stand volumes (Fig. 1b) also showed that GWR

model made remarkable improvements in the prediction of stand vol-

ume compared with that of MLR model (Fig. 1a). In addition, GWR

model did not produce strong correlations between the local coefficient

estimates (Tab. 3), indicating that multicollinearity among the local

coefficients might not exist.

4. Discussion

The results showed that the effects of stand age and basal area were

not constant over the study area, which resulted in the variability of

stand volume of Acacia mangium plantations. This is reasonable be-

cause stand volume tends to vary from one location to another de-

pending on their site productivities, which can be affected by natural

and management factors (Skovsgaard and Vanclay, 2008). Although

we lack of site index data to measure site productivity, the variations

of stand volume in the lower, middle and higher ranges of Fig. 1 could

indicate that site productivity varied over the study area. It was dif-

ficult to observe natural factors inherent to the plantation sites, but
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we recognized that thinning seems to be a possible management factor

contributed to the variability of stand conditions. During the field-

work, we observed that thinning varied considerably in their intensity

and timing. Although the company has scheduled thinning periodically

when stands reach 3, 5, and 7 years old, some stands at those ages were

not thinned due to budget constraints. Such thinning practice would

create variability in basal area and volume growths of the plantations,

even within stands at a particular age. Vélez and Valle (2007) observed

that frequent low thinning has caused the low growth of basal area and

volume of Acacia mangium plantations in Colombia.

It is not surprising that MLR model produced less accurate predic-

tions because this classical regression model does not take into account

spatial variations in the stand variables. The MLR model only fitted a

single function (Tab. 1) to all observations from various locations, hence

its predictions might be close to the actual stand volumes at a certain

location but it would be bias at other locations whose higher spatial

variations in their basal area and stand age. Indeed, the model ignores

a reality that stand volumes tend to vary according to local site condi-

tions. It is reasonable if MLR model underestimated stand volume at

the lower and higher ranges but it overestimated stand volume at the

middle range (Fig. 1a), because this model does not consider the local

spatial variations of stand variables. Similar result was also reported

by Wang et al. (2005) who observed that MLR model underestimated

net primary production (NPP) in the higher range but it overestimated

NPP in the lower range.

On the other hand, GWR model indeed accounted for local spatial

variations in the stand variables because it predicted stand volumes us-

ing appropriate local parameters derived from only several neighboring

observations (instead of all observations as used in MLR model) within

the bandwidth. A location dominated with smaller trees would have
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different model parameters to another location dominated with larger

trees (Fig. 2), so that their predicted stand volumes would be different

as well. Accordingly, local variations in site productivity of the plan-

tations can be captured adaptively by GWR model, which resulted in

more accurate predictions compared with those of MLR model. This

result is consistent with previous studies (e.g., Zhang et al., 2004, Zhang

and Shi, 2004, Wang et al., 2005, Kupfer and Farris, 2007, Kimsey et

al., 2008), which proved that GWR model produced better prediction

accuracy than classical regression techniques. In our study, about 83%

of the local R2
adj (Fig. 2d) was higher than the global R2

adj (= 0.961), in-

dicating that GWR model produced a better explanatory ability with

a greater accuracy (Fig. 1b) than MLR model. The model does not

only account for the effects of stand age and basal area (as MLR model

does), but it also integrates local spatial information that inherent to

the stand variables (that cannot be captured by MLR model). These

results are expected because forest managers will have more accurate

stand volume estimates, hence uncertainty in estimating timber bene-

fits could be reduced accordingly.

Despite the advantages, there are some possible shortcomings of

GWR method. First, GWR (as also the case for other spatially-based

methods) requires more data than MLR or other classical regression

models. Unlike MLR, which is non spatially-based method, GWR also

requires sample plots data with known geographical coordinates in or-

der to predict local coefficients at a certain location based on neigh-

boring observations. It should not be a serious problem, however, if

the existing forest inventory provides extensive data in which the geo-

graphical coordinates of sample plots could be easily measured by using

a GPS (Global Positioning System) device. Second, GWR could not

directly produce predictions at un-sampled locations, unless the loca-

tions have known values of each independent variable (e.g., elevation,
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aspect, and normalized different vegetation index). It is therefore we

could not able to produce surface map showing the spatial distribution

of stand volumes over the study area, because there were no data for

the stand age and basal area at un-sampled locations. When data for

each independent variable are available at every location, such as those

derived from a digital elevation model (DEM), it is possible to produce

a map showing continuous predictions over space as demonstrated by

Kupfer and Farris (2007) for predicting basal area as well as Kimsey

et al. (2008) for predicting site index. When such data are unavail-

able, however, it is still possible to produce a surface map of a pre-

dicted variable by using geostatistics as demonstrated by Tiryana et al.

(2009) for predicting carbon stocks in the study area. The last issue is

that GWR may produce multicollinearity among local coefficients that

can invalidate their interpretation (Wheeler and Tiefelsdorf, 2005). In

our study, there were only moderate negative correlations between the

local coefficient estimates (Tab. 3), so that the GWR results are still

reliable. Nevertheless, as discussed by Wheeler and Tiefelsdorf (2005),

GWR method would be more suitable for exploring spatial variations

in stand attributes, but, it would be less appropriate for generating

continuous spatial predictions.

5. Conclusion

This study showed that GWR model was able to reveal spatial vari-

ations in the relationship between stand volume, stand age, and basal

area. The effects of stand age and basal area to stand volume varied

considerably from one location to another, which might be caused by

differences in thinning. Because the GWR model accounted for the lo-

cal variations in the stand variables, it could produce better prediction

accuracy than MLR model. It reduced AIC by 2%, increased R2
adj up

to 3%, and reduced RMSE by 14%. The GWR models would there-
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fore be useful for exploring spatial variations in stand attributes, which

could not be revealed by using ordinary regression models.
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地理的加重回帰を用いた Acacia mangium 人
工林林分材積の空間的な変動のモデル化

タタン·ティリアーナ・龍原 哲・白石 則彦
要約: 林分材積は重回帰 (MLR) モデルや他の通常の回帰モデルを用いることに

よって, 他の林分変数から推定することができる. しかし, MLR では対象
地全体を対象としたパラメータしか推定できないため, 林分変数の空間的変
動を示すことができない. 本研究では, 地理的加重回帰 (GWR) を用いて,

Acacia mangium 人工林における林分材積と, 樹齢, 胸高断面積との関係
の空間的変動を調べるとともに, GWR モデルが MLR モデルより予測精
度が良いかどうかを調べた. 人工林内に設置された 247 個の区画から林分
データと地理座標を得た. 林分材積を樹齢と胸高断面積に関連させる線形モ
デルを定式化し, MLR と GWR を用いてデータを解析した. パラメータ
の推定値と適合度検定統計量によって GWR モデルと MLR モデルを比較
した. その結果, GWR モデルは林分材積と樹齢, 胸高断面積との関係の空
間的変動を示すことができるだけでなく, MLR モデルより予測精度が良い
ことが示された. GWR モデルは MLR モデルと比較し, AIC を 2% 減少
させ, R2

adj を 3% まで増加させ, RMSEを 14% 減少させた. したがって,

GWRモデルは, 普通の回帰モデルによって示すことができない林分属性の
空間的変動をモデル化する上で有用であるといえる.

キーワード: 林分材積, 空間変動, 地理的加重回帰地理的加重回帰 (GWR)
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